3.1.91 \(\int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x)) \, dx\) [91]

3.1.91.1 Optimal result
3.1.91.2 Mathematica [A] (verified)
3.1.91.3 Rubi [A] (warning: unable to verify)
3.1.91.4 Maple [B] (verified)
3.1.91.5 Fricas [B] (verification not implemented)
3.1.91.6 Sympy [F]
3.1.91.7 Maxima [F]
3.1.91.8 Giac [F(-1)]
3.1.91.9 Mupad [F(-1)]

3.1.91.1 Optimal result

Integrand size = 47, antiderivative size = 325 \[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=-\frac {(a-i b)^2 (B+i (A-C)) \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f}-\frac {(a+i b)^2 (B-i (A-C)) \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f}+\frac {2 \left (a^2 B-b^2 B+2 a b (A-C)\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (8 c^2 C-14 B c d+35 (A-C) d^2\right )\right ) (c+d \tan (e+f x))^{3/2}}{105 d^3 f}-\frac {2 b (4 b c C-7 b B d-4 a C d) \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{35 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f} \]

output
-(a-I*b)^2*(B+I*(A-C))*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))*(c-I* 
d)^(1/2)/f-(a+I*b)^2*(B-I*(A-C))*arctanh((c+d*tan(f*x+e))^(1/2)/(c+I*d)^(1 
/2))*(c+I*d)^(1/2)/f+2*(B*a^2-B*b^2+2*a*b*(A-C))*(c+d*tan(f*x+e))^(1/2)/f+ 
2/105*(20*a^2*C*d^2-14*a*b*d*(-5*B*d+2*C*c)+b^2*(8*c^2*C-14*B*c*d+35*(A-C) 
*d^2))*(c+d*tan(f*x+e))^(3/2)/d^3/f-2/35*b*(-7*B*b*d-4*C*a*d+4*C*b*c)*tan( 
f*x+e)*(c+d*tan(f*x+e))^(3/2)/d^2/f+2/7*C*(a+b*tan(f*x+e))^2*(c+d*tan(f*x+ 
e))^(3/2)/d/f
 
3.1.91.2 Mathematica [A] (verified)

Time = 5.24 (sec) , antiderivative size = 314, normalized size of antiderivative = 0.97 \[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=\frac {2 \left (\left (20 a^2 C d^2+14 a b d (-2 c C+5 B d)+b^2 \left (8 c^2 C-14 B c d+35 (A-C) d^2\right )\right ) (c+d \tan (e+f x))^{3/2}+3 b d (-4 b c C+7 b B d+4 a C d) \tan (e+f x) (c+d \tan (e+f x))^{3/2}+15 C d^2 (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}+\frac {105}{2} (a-i b)^2 (i A+B-i C) d^3 \left (-\sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )+\sqrt {c+d \tan (e+f x)}\right )+\frac {105}{2} (a+i b)^2 (-i A+B+i C) d^3 \left (-\sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )+\sqrt {c+d \tan (e+f x)}\right )\right )}{105 d^3 f} \]

input
Integrate[(a + b*Tan[e + f*x])^2*Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f 
*x] + C*Tan[e + f*x]^2),x]
 
output
(2*((20*a^2*C*d^2 + 14*a*b*d*(-2*c*C + 5*B*d) + b^2*(8*c^2*C - 14*B*c*d + 
35*(A - C)*d^2))*(c + d*Tan[e + f*x])^(3/2) + 3*b*d*(-4*b*c*C + 7*b*B*d + 
4*a*C*d)*Tan[e + f*x]*(c + d*Tan[e + f*x])^(3/2) + 15*C*d^2*(a + b*Tan[e + 
 f*x])^2*(c + d*Tan[e + f*x])^(3/2) + (105*(a - I*b)^2*(I*A + B - I*C)*d^3 
*(-(Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]]) + Sqrt[ 
c + d*Tan[e + f*x]]))/2 + (105*(a + I*b)^2*((-I)*A + B + I*C)*d^3*(-(Sqrt[ 
c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]]) + Sqrt[c + d*Tan 
[e + f*x]]))/2))/(105*d^3*f)
 
3.1.91.3 Rubi [A] (warning: unable to verify)

Time = 2.31 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.02, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.362, Rules used = {3042, 4130, 27, 3042, 4120, 27, 3042, 4113, 3042, 4011, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan (e+f x)^2\right )dx\)

\(\Big \downarrow \) 4130

\(\displaystyle \frac {2 \int -\frac {1}{2} (a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)} \left ((4 b c C-4 a d C-7 b B d) \tan ^2(e+f x)-7 (A b-C b+a B) d \tan (e+f x)+4 b c C-a (7 A-3 C) d\right )dx}{7 d}+\frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\int (a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)} \left ((4 b c C-4 a d C-7 b B d) \tan ^2(e+f x)-7 (A b-C b+a B) d \tan (e+f x)+4 b c C-a (7 A-3 C) d\right )dx}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\int (a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)} \left ((4 b c C-4 a d C-7 b B d) \tan (e+f x)^2-7 (A b-C b+a B) d \tan (e+f x)+4 b c C-a (7 A-3 C) d\right )dx}{7 d}\)

\(\Big \downarrow \) 4120

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}-\frac {2 \int -\frac {1}{2} \sqrt {c+d \tan (e+f x)} \left (-2 c (4 c C-7 B d) b^2+28 a c C d b-5 a^2 (7 A-3 C) d^2-\left (\left (8 C c^2-14 B d c+35 (A-C) d^2\right ) b^2-14 a d (2 c C-5 B d) b+20 a^2 C d^2\right ) \tan ^2(e+f x)-35 \left (B a^2+2 b (A-C) a-b^2 B\right ) d^2 \tan (e+f x)\right )dx}{5 d}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {\int \sqrt {c+d \tan (e+f x)} \left (-2 c (4 c C-7 B d) b^2+28 a c C d b-5 a^2 (7 A-3 C) d^2-\left (\left (8 C c^2-14 B d c+35 (A-C) d^2\right ) b^2-14 a d (2 c C-5 B d) b+20 a^2 C d^2\right ) \tan ^2(e+f x)-35 \left (B a^2+2 b (A-C) a-b^2 B\right ) d^2 \tan (e+f x)\right )dx}{5 d}+\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {\int \sqrt {c+d \tan (e+f x)} \left (-2 c (4 c C-7 B d) b^2+28 a c C d b-5 a^2 (7 A-3 C) d^2-\left (\left (8 C c^2-14 B d c+35 (A-C) d^2\right ) b^2-14 a d (2 c C-5 B d) b+20 a^2 C d^2\right ) \tan (e+f x)^2-35 \left (B a^2+2 b (A-C) a-b^2 B\right ) d^2 \tan (e+f x)\right )dx}{5 d}+\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}}{7 d}\)

\(\Big \downarrow \) 4113

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {\int \sqrt {c+d \tan (e+f x)} \left (35 \left (-\left ((A-C) a^2\right )+2 b B a+b^2 (A-C)\right ) d^2-35 \left (B a^2+2 b (A-C) a-b^2 B\right ) d^2 \tan (e+f x)\right )dx-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}}{5 d}+\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {\int \sqrt {c+d \tan (e+f x)} \left (35 \left (-\left ((A-C) a^2\right )+2 b B a+b^2 (A-C)\right ) d^2-35 \left (B a^2+2 b (A-C) a-b^2 B\right ) d^2 \tan (e+f x)\right )dx-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}}{5 d}+\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}}{7 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {\int \frac {-35 \left ((A c-C c-B d) a^2-2 b (B c+(A-C) d) a-b^2 (A c-C c-B d)\right ) d^2-35 \left ((B c+(A-C) d) a^2+2 b (A c-C c-B d) a-b^2 (B c+(A-C) d)\right ) \tan (e+f x) d^2}{\sqrt {c+d \tan (e+f x)}}dx-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}+\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {\int \frac {-35 \left ((A c-C c-B d) a^2-2 b (B c+(A-C) d) a-b^2 (A c-C c-B d)\right ) d^2-35 \left ((B c+(A-C) d) a^2+2 b (A c-C c-B d) a-b^2 (B c+(A-C) d)\right ) \tan (e+f x) d^2}{\sqrt {c+d \tan (e+f x)}}dx-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}+\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}}{7 d}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac {-\frac {35}{2} d^2 (a+i b)^2 (c+i d) (A+i B-C) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx-\frac {35}{2} d^2 (a-i b)^2 (c-i d) (A-i B-C) \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac {-\frac {35}{2} d^2 (a+i b)^2 (c+i d) (A+i B-C) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx-\frac {35}{2} d^2 (a-i b)^2 (c-i d) (A-i B-C) \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}}{7 d}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac {-\frac {35 i d^2 (a-i b)^2 (c-i d) (A-i B-C) \int -\frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}+\frac {35 i d^2 (a+i b)^2 (c+i d) (A+i B-C) \int -\frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}}{7 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac {\frac {35 i d^2 (a-i b)^2 (c-i d) (A-i B-C) \int \frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}-\frac {35 i d^2 (a+i b)^2 (c+i d) (A+i B-C) \int \frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}}{7 d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac {-\frac {35 d (a-i b)^2 (c-i d) (A-i B-C) \int \frac {1}{\frac {i \tan ^2(e+f x)}{d}+\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{f}-\frac {35 d (a+i b)^2 (c+i d) (A+i B-C) \int \frac {1}{-\frac {i \tan ^2(e+f x)}{d}-\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{f}-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}}{5 d}}{7 d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 C (a+b \tan (e+f x))^2 (c+d \tan (e+f x))^{3/2}}{7 d f}-\frac {\frac {2 b \tan (e+f x) (-4 a C d-7 b B d+4 b c C) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac {-\frac {2 (c+d \tan (e+f x))^{3/2} \left (20 a^2 C d^2-14 a b d (2 c C-5 B d)+b^2 \left (35 d^2 (A-C)-14 B c d+8 c^2 C\right )\right )}{3 d f}-\frac {70 d^2 \left (a^2 B+2 a b (A-C)-b^2 B\right ) \sqrt {c+d \tan (e+f x)}}{f}-\frac {35 d^2 (a-i b)^2 \sqrt {c-i d} (A-i B-C) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f}-\frac {35 d^2 (a+i b)^2 \sqrt {c+i d} (A+i B-C) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f}}{5 d}}{7 d}\)

input
Int[(a + b*Tan[e + f*x])^2*Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + 
C*Tan[e + f*x]^2),x]
 
output
(2*C*(a + b*Tan[e + f*x])^2*(c + d*Tan[e + f*x])^(3/2))/(7*d*f) - ((2*b*(4 
*b*c*C - 7*b*B*d - 4*a*C*d)*Tan[e + f*x]*(c + d*Tan[e + f*x])^(3/2))/(5*d* 
f) + ((-35*(a - I*b)^2*(A - I*B - C)*Sqrt[c - I*d]*d^2*ArcTan[Tan[e + f*x] 
/Sqrt[c - I*d]])/f - (35*(a + I*b)^2*(A + I*B - C)*Sqrt[c + I*d]*d^2*ArcTa 
n[Tan[e + f*x]/Sqrt[c + I*d]])/f - (70*(a^2*B - b^2*B + 2*a*b*(A - C))*d^2 
*Sqrt[c + d*Tan[e + f*x]])/f - (2*(20*a^2*C*d^2 - 14*a*b*d*(2*c*C - 5*B*d) 
 + b^2*(8*c^2*C - 14*B*c*d + 35*(A - C)*d^2))*(c + d*Tan[e + f*x])^(3/2))/ 
(3*d*f))/(5*d))/(7*d)
 

3.1.91.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 

rule 4120
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.) 
*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[b*C*Tan[e + f*x]*((c + d*Tan[e + f*x])^(n + 
 1)/(d*f*(n + 2))), x] - Simp[1/(d*(n + 2))   Int[(c + d*Tan[e + f*x])^n*Si 
mp[b*c*C - a*A*d*(n + 2) - (A*b + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C* 
d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, 
b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && 
  !LtQ[n, -1]
 

rule 4130
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_. 
) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d*Tan[ 
e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a 
+ b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C 
*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f*x] - (C* 
m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, 
b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && 
 NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[ 
c, 0] && NeQ[a, 0])))
 
3.1.91.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3352\) vs. \(2(291)=582\).

Time = 0.16 (sec) , antiderivative size = 3353, normalized size of antiderivative = 10.32

method result size
parts \(\text {Expression too large to display}\) \(3353\)
derivativedivides \(\text {Expression too large to display}\) \(4775\)
default \(\text {Expression too large to display}\) \(4775\)

input
int((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e) 
^2),x,method=_RETURNVERBOSE)
 
output
4/3/f/d*B*a*b*(c+d*tan(f*x+e))^(3/2)-1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*a 
rctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2 
)^(1/2)-2*c)^(1/2))*A*a^2+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*( 
c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c 
)^(1/2))*A*b^2+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1 
/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C* 
a^2+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+( 
2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*a^2-1/f*d/( 
2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2) 
^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*b^2-1/f*d/(2*(c^2+d^2) 
^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c) 
^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*a^2+1/2/f/d*ln(d*tan(f*x+e)+c+(c+ 
d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c 
^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a*b-1/2/f/d*ln(d*tan(f*x+e)+c+(c+ 
d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c 
^2+d^2)^(1/2)+2*c)^(1/2)*a*b*c-1/2/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d 
^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+ 
2*c)^(1/2)*(c^2+d^2)^(1/2)*a*b+1/2/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d 
^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+ 
2*c)^(1/2)*a*b*c+2/f*b*(B*b+2*C*a)/d^2*(1/5*(c+d*tan(f*x+e))^(5/2)-1/3*...
 
3.1.91.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 23984 vs. \(2 (281) = 562\).

Time = 4.69 (sec) , antiderivative size = 23984, normalized size of antiderivative = 73.80 \[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=\text {Too large to display} \]

input
integrate((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan( 
f*x+e)^2),x, algorithm="fricas")
 
output
Too large to include
 
3.1.91.6 Sympy [F]

\[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=\int \left (a + b \tan {\left (e + f x \right )}\right )^{2} \sqrt {c + d \tan {\left (e + f x \right )}} \left (A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )\, dx \]

input
integrate((c+d*tan(f*x+e))**(1/2)*(a+b*tan(f*x+e))**2*(A+B*tan(f*x+e)+C*ta 
n(f*x+e)**2),x)
 
output
Integral((a + b*tan(e + f*x))**2*sqrt(c + d*tan(e + f*x))*(A + B*tan(e + f 
*x) + C*tan(e + f*x)**2), x)
 
3.1.91.7 Maxima [F]

\[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=\int { {\left (C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A\right )} {\left (b \tan \left (f x + e\right ) + a\right )}^{2} \sqrt {d \tan \left (f x + e\right ) + c} \,d x } \]

input
integrate((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan( 
f*x+e)^2),x, algorithm="maxima")
 
output
integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*(b*tan(f*x + e) + a)^2*s 
qrt(d*tan(f*x + e) + c), x)
 
3.1.91.8 Giac [F(-1)]

Timed out. \[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=\text {Timed out} \]

input
integrate((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan( 
f*x+e)^2),x, algorithm="giac")
 
output
Timed out
 
3.1.91.9 Mupad [F(-1)]

Timed out. \[ \int (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx=\text {Hanged} \]

input
int((a + b*tan(e + f*x))^2*(c + d*tan(e + f*x))^(1/2)*(A + B*tan(e + f*x) 
+ C*tan(e + f*x)^2),x)
 
output
\text{Hanged}